AD=AD6S 138

UNCLASSIFIED

RHODE ISLAND UNIV KINGSTON DEPT OF ELECTRICAL ENGIN==ETC F/6 9/%

SYNTHESIS OF DIGITAL FILTER STRUCTURES WITH LOW ROUNDOFF NOISE ==ETC(U)

DEC 78 L B JACKSON: A 6 LINDGREN:» Y KIM AFOSR=76=3057
AFOSR=TR=79=0036 NL

~




= o

SYNTHESIS OF DIGITAL FILTER STRUCTURES WITH
LOW ROUNDOFF NOISE AND COEFFICIENT SENSITIVITY -

FINAL REPORT

Grant: AFOSR-76-3057

ADAQ 651 35

Period Covered: 1 June 1976 to 30 November 1978

Report Date: 15 December 1978

Submitt=d by:

Leland B. Jackson, Co-Principal Investigator .
Allen G. Lindgren, Co-Principal Investigator |
Department of Electrical Engineering - :
University of Rhode Island .
Kingston, Rhode Island 02881 ).

~,

— TPy et

DDC FILE COP

Submitted to:

Directorate of Mathematical and Information Sciences
Air Force Office of Scientific Research (NM)
Bolling Air Force Base, Washington, D.C. 20332

79 02 15 015 j

AIR FORCE OFFICE OF SCIENTIFIC RES
g EAR
NOTICE OF TRANSMITTAL TO DDC o i

This technical report has been r Approve for

eviewed and is 4 fo pudblic re
approved for public release I distribution lease;
Distribution is unlimited, AW AFR 190-12 (7b) . butio unlimiteaq,

A. D. BLOSE
Technical Information Officer

-




ABSTRACT

Optimal synthesis procedures for second-order state-space digital
filters have been developed in the sense of minimum output roundoff
noise with Lz scaling. It has been demonstrated that these procedures
are also nearly optimal for L_ scaling. The coefficient sensitivities
have been shown to be closely related to the roundoff-noise components,
and hence the optimal designs also have low sensitivity properties.

The limit-cycle behavior of state-space structures has been investigated
for rounding and for magnitude truncation. It was shown that rounding
often leads to large autonomous limit cylces; while with magnitude

truncation, it is possible to avoid limit cycles altogether. These

results are presented in the two papers attached to this report.
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| * ; OPTIMAL SYNTHES1S OF SECOND-ORDER
! “3 STATE-SPACE STRUCTURES FOR DIGITAL FILTERS
Leland B, Jackson, Allen G, Lindgren, and.Young Kim

! University of Rhode Island
Kingston, Rhode Island 02881

Abstract

Sufficient conditions are derived for a second-order state-
space digital filter with L2 scaling to be optimal with respect to
output round-off noise; and from these, a simple synthesis proce-
dure is developed, Parallel-form designs produced by this method
are equivalent to the block-optimal designs of Mullis and Roberts,
The corresponding cascade-form designs are not equivalent, bu§
they are shown by example to be quite close in performance, It
is also shown that the coefficient sensitivities of this struc-

ture are closely related to its noise performance, Hence, the op-

timal design has low coefficient sensitivity properties, and any
other low-sensitivity design is a good candidate for near-optimal
noise performance, The uniform-grid structure of Rader and Gold

is an ihteresting and useful case in point,

This research was sponsored by the Air Force Office of Scientific
Research, Air Force Systems Commaml, USAF, under Grant, No, AFOSR-
76-3057.
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Introduction

The synthesis of IIR digital filter structures with low
roundoff noise based on state-space formulation has been intro-
duced by Hwang [l-h] and Mullis and Roberts [5—7]. These struc-
tures are especially effective in reducing the output noise level
from narrow-bandwidth filters, However, the general technique
leads to structures having many more multipliers than the canoni-
cal structures (i.e., N2 more, where N is the filter order). Rec-
ognizing that this would often make these structures impractical,
Mullis and Roberts have proposed that the state-space structural
form be used only for the individual sections of the cascade
or parallel forms and that these structures then be optimized to
produce "block-optimal" cascade or parallel forms, These block-
optimal structures have only about twice the number of multi-
pliers as the canonical structures, but greatly decreased noise
levels are still achieved for narrow-bandwidth filters,

The synthesis procedure of Mullis and Roberts involves the
calculation of "block second-order modes" for the filter, which
are obtained from the eigenvalues of certain matrices, For the
block-optimal parallel form, the optimization of the overall net-
work 1slequ1valent to optimizing each of the parallel sections
separately. For the blqck-Optimal cascade form, however, the
choice of pairing and ordering for the poles and zeros of the
filter influences the resulting optimizea design, although the
pairing and ordering choice itself is not optimized. In either
case, the synthesis procedure is relatively complicated, and
simpler procedures for optimal or near-optimal design are de-

sirable,




We have derived a sel of sufficient conditions for a sccond-
order state-space structure to be optimal, and from these condi-
tions, a simple synthesis procedure is produced, Parallel de-
signs produced by this procedure are block-optimal; but because
the sections are individually synthesized (nxcept for scaling),
the resulting cascade designs are not block-optimal, Design ex-
amples show, however, that the difference in performance between
our technique and that of Mullis and Roberts for the cascade
form is quite small,

We have also shown that the state-variable noise terms are
closely related to the sensitivities of the network coefficients,
Hence, the designs with optimal noise performance also have low
coefficient sensitivities, Alternatively, any design with low-
sensitivity properties is a good candidate for near-optimal
noise performance, In particular, an alternate synthesis pro-
cedure leading to good (but not optimum) noise performance is to
force the state transition matrix A to be anti-symmetric, which
corresponds to the uniform-grid structure of Rader and Gold [12].

Noise Minimization

A flow diagram of the second-order state-space structure is

shown in Fig. 1, corresponding to the state equations
x(n+1) = Ax(n) + bu(n) + :(n)
y(n) = cx(n) + du(n) + ej(n). (1)
The roundoff errors ed(n), j =1,2,3, are assumed. to be uncor-

related over n and j, and hence the output noise power is given

by
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o> =k o> = le\l7 (2)

where Glj(z) is the (scaled) frequency recsponse from ej(n) to
y(n), ll*“p denotes the Lp norm, o‘i is the variance of the noise
from a single rounding operation, and k is the number of round-
off errors included in each ej(n) [9}. In general, k = 3 if

rounding is performed after multiplication (before summation);

while k = 1 if rounding is performed after summation, Scaling
is assumed to be of the form
fieli = 3 (3)

ip
’
where Fi(z) is the (scaled) frequency response from u(n) to xi(n),

and most commonly, p = 2 or p = o [9] We analyze and optimize

only the L_ scaling case here although the resulting networks

2

can be readily rescaled to realize L scaling,
o
Given a filter design (A,b,c,d) with unscaled and unoptimized
responses F].(z) and GJ(z), we consider the class of designs de-

fined by (A’ o', ,d) =(T'1AT, 1

b,cT,d). Defining the response
t
vectors F(z) =(F1(z),1~*2(z)) and Gt(z) =(G1(7‘)’G2(z)) and similarly

/’
for the scaled vectors F(z) and G’ (z), it is readily shown that

¥ (2)

-k
LI - a] o =711R2) (4)

and

G’ (z) (71~A7 "]"l V= ’l‘.'G(z). . (5)

(Note that G',’(z) = 1 independently of T, and hence it cannot affect

the noise minimization),
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Mullis and Roberts [5-7] have shown Lhal necessary and suf'-
ficient conditions for minimum output noise variance 62 subject to

L, scaling are

2
W = DK'D (6)
and
’ ’ S iy ’ A
1i%ii © ij wjj for all i,J (7)
where
[ -] .
= 3 (%) ) (8)
k=0
(I r 2 Kkt ¢t 1 k
wo= kzo (A7) e &) (9)

and D is a diagonal matrix, Definitions (8) and (9) may be ex-

pressed in the frequency domain as

K = § F (z) Ft (i-l) z-'l dz (10)

and

=
]

5 ﬁ G’ (z) G't(z-l) o dz, (11)

Hence, the scaling constraint in (3) implies that

2
’
A HFi”2 =1 for all i, ' (12)

and from (7) we then have

"11 = w;J for all i, (13)
or
2 o
hesll =Nl ror a11 i,4. (11)
2 2 _

That is, the optimal networks is characterized by having equal

noise contr;butlons from each error source,
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Equations (12) and (13) show that (6) is satisfied if, and
only if, D = pI; and thus an alternate condition which is both

necessary and sufficient for optimality (after scaling) is simply
wo= %, (15)

In the second-order case, we note that (15) is not changed by
writing it as

w o= p%mk'M (16)

where

1. 0
because w and K are symmetric matrices with equal diagonal ele-
ments, From (8) and (9), it is readily shown that (16) and thus

(15) are satisfied by a network of the form

e

MA'M (174)
and

't
Cc

MY | (17v)

and for complex-conjugate poles, (17) can always be realized with

’
real-valued coefficient matrices A, bz and ¢/, After exploring

(%1}




this case further, we will consider the case of real-valued poles
in a second-order filter,

’
(5&3 In terms of the elements of (A ,b" ,c,d), (17) states simply that

’ ’

i "~ Nas

and (18)
B
b; c& X

This network is readily synthesized from an arbitrary (A,b,c,d)
as follows: One implication of (17) is that if the transpose of

and x, are inter-

the optimal network is formed and the states X4 >

changed, the resulting network is identical with the original op-
timal network except for scaling, But if we form the network

t t t N s
(MA"M,Mc“/2,b"M,d/2) and place it in parallel with the network
(A,b/2,c,d/2), we producc an overall network with the above prop-
erty and the same transfer function, Therefore, we can synthe-
size the optimal network simply by merging these two parallel net-

works into a single network (R,G,E,d) and then scaling it via
I, 0
T = ; (19)

' ~
0 EXN

The above synlhesis technique is particularly straightforward

when one starts with the transfer function H(z) expressed as

. 1SRN E . Y
PO S B (A i o

Yqz-z + le-l
H(z) = d + —= s (20)
: 52z + Blz + 1
.
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and implemented, for example, by

- B - B,
A= 3 z b = (21)

1 (0) (0)

e® (v, ¥a).
The coefficients of (A,;,c,d) are then

ajy T ag, =B,/2

, T Cd DS |
s Y, LRl B (22)
~ Vl P
C, = ———— c.. = 1
1 1 % Y2 2

>

—

g
-2 2 2
srw Yy ST PR J Y- Y SR, ]

L)

~

= -1 1 / 2 23
Pl P R DR e B AT T A PP

The expression under the radical in 512 and ;21 is always positive
for complex-conjugatle poles, and hence the coefficients in (22)
are all real-valued in that case, Note that the coefficients in
(22) do indeed satisfy (18). 1If the network (A,B,E,&) is then

scaled via (19), the resulting second-order network is optimal

for L2 scaling, The network may be scaled instead via

e, o
0 ¥,
to realize LQ scaling, if desired, The resulting network is not

the optimal L network, in general, but our initial experiments
®

with this case indicate it is very nearly optimal,
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Turning briefly to the case of real-valued poles (pl and pz),

we consider an A of the form

>
]

(23)

where we then have

1 iy
a; =5 (p; * p,)s a, =+ 5 (p; - p,).

Note that (23) still satisfies (17a) as well as A® = A. The ap-
propriate relationship between b and ¢ depends on the location of
the zero for H(z)-d. In particular, b and ¢ can satisfy either
(17b) or

et = oh (24)

in order to satisfy the optimality condition in (16) or (15),
respectively., Scaling of a network satisfying (23) and (17b) is
performed as before via (19); while scaling for (23) and (24) is
accomplished via an orthogonal transformation as described in the
next section in order to preserve the symmetry of A,

Coefficient Sensitivities

The minimization of the roundoff noise also implies low sen-
sitivities for the network coefficients, To show this, we note
first that

OHSf! & G;(z)

ob i
and (25)
aH‘ZI - F’J(Z)

0 c'J

>
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where H(z) is the overall transfer function of the second-order
section., But in the optimal network -we have minimized the sum of
the L2 norms of these sensitivities, subject to the scaling con-

straint in (3). We then define the sensitivities

’ oH( z vt .
sy ,(2) = —‘i-'Lil = ¢ (z) Fj(z) (26)
J

’
for the feedback coefficients in A, In [8] it was shown that

U4
sy Ny < Neill, Ies0,, (27)
and hence, from (3) and (27), we have
CRRPATAR (28)

Therefore, the upper bounds on the four sensitivity norms in (28) have
also been jointly minimized. Note, in particular, from (14) and (28) :
that the upper bounds on all four ”5;3"1 are the same.

Alternatively, of course, (28) provides lower bounds on the
noise contributions from el(n) and ez(n) in terms of the sensitivi-
ties of the coefficients in A’, If these bounds are reasonahly
tight, as experience has shown them to be [8]. then low-sensitivity
networks should also provide low roundoff noise, One network having
uniformly low sensitivity over the entire z plane, at least in terms
of the grid of possible pole locations with quantized coefficients,
was noted ten years ago by Rader and Gold [12]. This network is pro-

duced simply by forcing A to be anti-symmetric, i.e.,

a,, =a i Re[poles]

22

(29)

-a;, = asy = Im[poles]

i o "
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‘where the poles must be complex conjugates, The coefficient vectors

b and ¢ are not uniquely specified by (29), and there are two dis-
tinctly useful ways to generate b and c., We note first that (29)
does satisfy the first condition in (18); and thus if b and c are
choseﬁ to satisfy the second condition in (18) as well, the anti-
symmetric network and the optimal network are related by a simple
diagonal scaling transformation of the form of (19). This consti-
tutes, in fact, another simple technique for synthesizing the op-
timal structure when the poles are complex. The uniform-grid
property is not. however, preserved in the optimal network, in
general,

To preserve the uniform-grid property of the anti-symmetric
network, one instead seeks a transformation T which alters b (and
c) to satisfy (3), but does not changé A, The apéropriate trans-
formation is an orthogonal transformation times a scaling constant
(15], i.e.,

cos O sin @

T=q : (30)
-sin @ cos 0

where the "rotation" angle 0 and the scaling constant p are de-
’
termined such that "F1"2= "F;"?= 1, In particular, from (4) and

(30) we find that (with p = 1)

2 2 2
”F1"2 = cos?e “Fluz + sin? o HF2"2 - 28in@ cos® ('1"2) (31)

2 - 2 2
i IF,ll = sin®e [F,| + cos® 6 ||F,)| + 2s1n0 cose (¥ ,F,) (32)
2 2 2 ‘ .
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where

(Fi'F2) = ( 5%3 ) P Fl(z) Fz(z-l)z-ldz.

Subtracting (31) and (32), we obtain

l ' 2 o 2
tan 20 = LELPIR LT P (33)
2(F1,F2)

from which to solve for ®, The constant p is then readily obtained
as 1/"F;“2. The contour integrals in (33) are rapidly computed as
described in [1&]. The .resulting anti-symmetric design is not op-
timal, but as shown in the examples of the next section, the noise
performance is only about 1l-73db worse than the optimal design,
Examples

| Five filter design examples are presented in Tables 1 and 2,
where the noise gains 62/6§ are given in dB, The first three de-
signs afe from [13], and the last two are described by Mullis and

Roberts [6]. In Table 1, the canonical (1P), anti-symmetric, and

" block~optimal designs in parallel form are compared, The block-

optimal designs were obtained from (22) and (19). The anti-
symmetric designs satisfy (3) andl(29), and hence are suboptimal,
Note that the performance of the block-optimal design is best in
ali 5 cases, with the most significant improvement coming in the
narrowbgnd case, as expected, Note also that the anti-symmetric
designs are close to the block-optimal designs in performance,
The corresponding results for the cascade-form designs are

presented in Table 2, An additional column is included here be-
cause, as discussed in the Introduction, our "section-optimal"

designs resulting from (22) and (19) are not quite the same as




the block-optimal designs of Mullis and Roberts, The functions
aj(m) in (19) include the transfer functions of all preceding sec-
tions so that (3) is satisfied exactly, This form of scaling has
also been applied here to the block-optimal designs,

No attempt
has been made to optimi;e the section ordering, As the table
shows, the results for the section-optimal aﬁd block-optimal de-
signs are quite close and are significantly better than those for
the canonical structure in all but one casc, where they are com-
parable, The results for the anti-symmetric designs are also near-
optimal, but differ by 2-2,5db in the Butterworth cases.

It should be noted that it is possiblg.fbr the canonical
forms to have lower noise gain than the optiﬁal forms, although.
this did not happen in these examples, because the second-order
state-space structure has almost twice the number of multipliérs
of the canonical structure, However, this rarely happens, and
when it does, the advantage is small,

Conclusions

We have determined sufficient conditions for a second-order
digital filter inAsyate-variable form with L2 scaling to be op-
timal with respect to output roundoff noise and have described
two simple techniques to synthesize the optimal network, In ad-
dition, we have shown thﬁ% L1 or L2 norms of the coefficient sen;
sitivities of the optimal network (or bounds on these sensitivi-
ties) are also minimized, and hence this network provides both low
roundoff noise and coefficient .on-itivity.' These second-order

structures can be combined to form "section-optimal" parallel or
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cascade forms which are the same as or close to, respectively,
the "block-optimal" parallel or cascade forms of Mullis and Rob-
erts,

The optimal network is within a simple diagonal transformation
of the anti-symmetric network of Rader and Gold, wh;ch has the nice»
property of a uniform grid of possible pole locations in the 2z
plane with quantized coefficients, If the anti-symmetric network
is scaled so as to preserve the anti-symmefric property, we find
that the resulting noise performance is close to (within typically
1-3db of) that of the optimal network. In either case, the noise
is relatively constant (or actually decreases) as the bandwidth
of the filter is reduced, in contrast with the performance of
canonical structures,

Recently, it has also been shown that the anti-symmetric
("normal") form [16,17] and our optimal form [17] for second-order
sections cannot sustain autonomous overflow oscillations, Hence,
parallel or cascade structures comprised of such sections have
the additional desirable property that autonomous overflow oscil-
lations cannot occur;
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Table 1, 62/63 IN dB FOR PARALLEL FORM DESIGN
Filter Canonical Anti-Symmifggﬁlock-Ogt

Cheb-11I

Cheb-1I

LPF,N=10 2. = 14, O £2:8

Elliptic

LPF,N=10 i 324 ot

Butterwth

LPF,N=6

e =6.25f 14,2 14.6 13. 4

c s

Butterwth

LPF,N=6

fc=0°025fs 27.0 14.8 13. 4

Table 2. ¢°/c> IN dB FOR CASCADE FORM DESIGNS

Filter

Canonical

Cheb-1II
BRF,N=6

21,0

Anti-Sym, Sect-Opt] Block-Opt |
10.5 10.5 10.5

Cheb I
LPF,N=10

29.9

24,2

24. 5

2he1

Elliptic
LPF,N=10

21.5

16.9

16.8.

16.5

Butterwth
LPF,N=6
fc=0.25fs

9.2

11,0

9.1

9.0

Butterwth
LPF,N=6

£ =0,025¢_

18,7

10.3

7.9

7.7

106
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Limit Cycles in State-Space Structures
for Digital Filters

Leland B, Jackson
University of Rhode Island
Kingston, Rhode Island 02881

ABSTRACT

It is shown that large quantization limit cycles are pos-
sible in state-space structures for digital filters with round- |
ing, as opposed to magnitude truncation where such 1limit cycles |
, can be avoided. The coupled-loop structure is considered speci-
! : fically. The maximum limit-cycle amplitudes with rounding are
obtained analytically for poles near the imaginary (or real)
z-plane axis and by simulation for other regions of the z-plane.

| This research was supported by the Air Force Office of Scientific
! Research, Air Force Systems Command, USAF, under Grant No.
AFOSR-76- 3057




Introduction

State-space structures for digital filters have been described
by Mullis and Roberts [1-3], Hwang [h-7], and Jackson, Lindgren
and Kim [8-9]. They have shown that these structures can possess
very low roundoff noise and coefficient sensitivity at the expense
of increased computation over canonical structures, Barnes and
Fam [10] have also shown that these structures can be designed to
eliminate the possibility of overflow oscillations, Specifically,
the second-order "coupled-loop" structure of Rader and Gold [11],
which has an anti-symmetric system matrix A, is free of aulonomous
overflow oscillations; and Jackson, Lindgren and Kim have shown
that the roundoff-noise performance of the coupled-loop structure

f is close to optimal.

i A key remaining question concerning state-space structures
is their limit-cycle behavior due to 1nternél daya quantization,
Although not noted by Barnes and Fam, filters satisfying their
conditions for the absence of overflow oscillations will also be
free of zero-input quantization limit cycles if wmagnitude trun-
cation is used., However, if rounding is employed, limit cycles
can occur which are substantially larger tﬁ;ﬁ those in the cor-
responding canonical structures, as we show in this correspondence,
Hence, in usiné state-space structures for digital filters, one
may well choose to employ magnitude truncation in spite of its

increased noisce variance and nolae/aignal correlation as compared

with rounding.




Rounding Limit Cycles

We will investigate the zero-input limit-cycle behavior
of the second-order coupled~loop structure with rounding as
being indicative of the more general (and more complicated)
second-order case, Second-order structures are of particular
intefest because they are the basic building-blocks of various
optimal or near-optimal cascade and parallel forms [1-3,8-9].

With zero input and rounding, the filter obeys the state
equétion

x(n+1) = [Ax(n) ], (1)

where x(n) is the state vector at time n, A is the system matrix,
and [-]R denotes the rounding operation; The ;econd-order
coupled-loop case is depicted in Fig, 1, and the canonical case
in Fig., 2, We assume rounding after each multiplication, The
complex-conjugate poles of this filter are simply at+jb,

A simple illustration of the large -limit cycles possible:
with the coupled- loop structure is provided by setting a = O, 4
Then the effective-value model of Jackson [12] shows that we can

have limit Cycles'with amplitudes as large as

; 0.5
Ko [ Sag ] (2)
where [-]1 denotes the integer part., The corresponding expression
ffor Lhc canonical struclture is
1 Sads 0.25
e 18 h= L5% ) | (3)

because the second-order coefficient in that case 15%2 = bz. Hence,

- the maximum limit-cycle amplitude in the coupled-loop case is approxi-

mately twice that in the canonical case for poles on or near the
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imaginary axis. A similar analysis can be made for the coupled-loop
structure with poles on or near the real axis (i.e., b = 0).

The nature of the more general situation for the coupled-loop
structure is illustrated in Fig, 3, which shows in one quadrant
of the z plane the corresponding maximum limit-cycle amplitudes
as determined by computer simulation for radii up to about 0,9,
Mirror-image symmetry holds about both the real and imaginary
axes, as well as about + h5° diagonals through the origin,

Hence, the amplitude for poles with given radius near the real
axis is the same as near the imaginary axis, as opposed to the
canonical case where much larger amplitudes are produced near
the real axis [12].

The worst case for the coupled-loop structure occurs on
the h5° diagonals, i,e,, for frequencies of @ = n/h and 3n/h.
Table 1 shows that the radii for K = 1,2,3 in the canonical
case are comparable to those for K = 3,6,10, respectively,
in the coupled-loop case, and hence the maximum limit-cycle
amplitudes for the coupled-loop structure are about triple those
for the canonical structure at these frequencies,

Conclusions

The advantages of "well-designed" state-space structures
for digital filters over canonical structures (at the expense of
increased computation) include reduced roundoff noise and
coefficient sensitivity, freedom from overflow oscillations, and
freedom from quantization limit cycles if magnitude truncation is

employed, If rounding is employed, however, large quantization limit

cycles can occur in the state-space structures, The coupled-loop

dAadents




structure was selected for investigation because it is particu-
larly simple to design and analyze and because it possesses the

advantages cited above,
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Canonical Structure

Amplitude Min, Radius Amplitude

Coupled-Loop Structure

Min, Radius

K=1 0.707 K= 3 0.707

K= 2 0.868 K=6 0,88}

K= 93 0.9173 K = 10 0.919
Table 1, Minimum Radii for Given Limit-Cycle Amplitudes

at w = n/4 and 3n/Y.
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Fig. 3 - First quadrant of z plane ihowin; maximum limit-
cycle amplitudes for coupled-loop structure except
very near the unit circle,
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